Sustainable Community Action
Advertisement

Boron is a chemical element with symbol B and atomic number 5. Because boron is produced entirely by cosmic ray spallation and not by stellar nucleosynthesis it is a low-abundance element in both the Solar system and the Earth's crust.[1] Boron is concentrated on Earth by the water-solubility of its more common naturally occurring compounds, the borate minerals. These are mined industrially as evaporites, such as borax and kernite. The largest proven boron deposits are in Turkey, which is also the largest producer of boron minerals.

Chemically uncombined boron, which is classed as a metalloid, is found in small amounts in meteoroids, but is not found naturally on Earth. Industrially, very pure boron is produced with difficulty, as boron tends to form refractory materials containing small amounts of carbon or other elements. Several allotropes of boron exist: amorphous boron is a brown powder, and crystalline boron is black, extremely hard (about 9.5 on the Mohs scale), and a poor conductor at room temperature. The primary use of elemental boron is to make boron filaments, which are used in a similar way to carbon fibers in some high-strength materials.

Almost all boron use is as chemical compounds. About half of global consumption of boron compounds is as additives for glass fibers in boron-containing fiberglass used for insulation or as structural materials. The next leading use is to make boron polymers and ceramics, that play specialized roles as high-strength lightweight structural and refractory materials. Borosilicate glass glassware is used for its greater strength and breakage resistance (thermal shock resistance) than ordinary soda lime glass. Boron compounds are also used as fertilizers in agriculture, and in sodium perborate bleaches. In minor uses, boron is an important dopant for semiconductors, and boron-containing reagents are used as intermediates in the synthesis of organic fine chemicals. A few boron-containing organic pharmaceuticals are used, or are in study. Natural boron is composed of two stable isotopes, one of which (boron-10) has a number of uses as a neutron-capturing agent.

In biology, borates have low toxicity in mammals (similar to table salt), but are more toxic to arthropods and are used as insecticides. Boric acid is mildly antimicrobial, and a natural boron-containing organic antibiotic is known.[2] Boron is essential to life. Small amounts of boron compounds play a strengthening role in the cell walls of all plants, making boron necessary in soils. Experiments indicate a role for boron as an ultratrace element in animals, but its role in animal physiology is unknown.

See also[]

  • Allotropes of boron
  • Category:Boron compounds
  • Boron deficiency
  • Boron oxide
  • Boron nitride
  • Boron neutron capture therapy
  • Boronic acid
  • Hydroboration-oxidation reaction
  • Suzuki coupling

References[]

  1. Lua error in package.lua at line 80: module 'Module:Citation/CS1/Configuration' not found.
  2. Lua error in package.lua at line 80: module 'Module:Citation/CS1/Configuration' not found.

External links[]

  • Boron at The Periodic Table of Videos (University of Nottingham)
  • Boron

Template:Boron compounds

Advertisement